Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1400748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629106

RESUMO

[This corrects the article DOI: 10.3389/fchem.2020.00777.].

2.
Front Chem ; 8: 777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195019

RESUMO

An anode bimetallic catalyst comprising Ni-Pd alloy nanoparticles was loaded on acid-treated multi-walled carbon nanotubes (MWCNTs) for application in a direct urea fuel cell. The bimetallic catalyst and MWCNTs were synthesized by a hydrothermal method at 160°C for 5 h. To reduce the catalyst particle size, alkaline resistance, and facilitate their uniform distribution on the surface of the MWCNTs, phosphorus (P) was added to the Ni-Pd/MWCNT catalyst. The effects of P on the distribution and reduction in size of catalyst particles were investigated by Brunauer-Emmett-Teller analysis, transmission electron microscopy, and X-ray diffraction analysis. The enhanced catalytic activity and durability of the P-containing catalyst was confirmed by the high current density [1897.76 mA/cm2 (vs. Ag/AgCl)] obtained at 0.45 V in a 3 M KOH/1.0 M urea alkaline aqueous solution compared with that of the catalyst without P [604.87 mA/cm2 (vs. Ag/AgCl)], as determined by cyclic voltammetry and chronoamperometry. A Urea-O2 fuel cell assembled with a membrane electrode assembly comprising the Ni-Pd(P)/MWCNT catalyst delivered peak power densities of 0.756 and 3.825 mW/cm2 at 25 and 60°C, respectively, in a 3 M KOH/1 M urea solution.

3.
IEEE Trans Biomed Circuits Syst ; 13(2): 352-363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30676977

RESUMO

Various biosensing platforms for real-time monitoring and mapping of chemical signals in neural networks have been developed based on CMOS process technology. Despite their achievements, however, there remains a demand for an advanced method that can offer detailed insights into cellular functions with higher spatiotemporal resolution. Here, we present a pH image sensor that employs a high-density array of 256 × 256 pixels and readout circuitry designed for fast operation. The sensor's characteristics, such as the pH sensitivity of 55.1 mV/pH and higher frame speed of 1933 fps, are experimentally demonstrated and compared to those of state-of-the-art pH image sensors. Among them, our sensor presents the smallest pitch of 2 µm with a significantly high operation speed. This sensor can successfully detect a pH change, but also transform the measured data to a two-dimensional image series in real time. The practical spatial resolution of images is investigated by an evaluation method that we first propose in this paper. By this method, we confirm that our sensor can discriminate objects distanced over 4 µm apart, which is twice bigger than the pixel pitch. In order to analyze the degraded resolution and image blur, a capacitive coupling effect at an ion-sensitive membrane is suggested as the main factor and demonstrated by simulation.


Assuntos
Técnicas Biossensoriais , Imageamento Tridimensional , Calibragem , Simulação por Computador , Concentração de Íons de Hidrogênio , Modelos Teóricos , Transistores Eletrônicos
4.
Sensors (Basel) ; 18(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301181

RESUMO

Few studies have investigated the gas-sensing properties of graphene oxide/titanium dioxide (GO/TiO2) composite combined with photocatalytic effect. Room temperature gas-sensing properties of the GO/TiO2 composite were investigated towards various reducing gases. The composite sensor showed an enhanced gas response and a faster recovery time than a pure GO sensor due to the synergistic effect of the hybridization, such as creation of a hetero-junction at the interface and modulation of charge carrier density. However, the issue of long-term stability at room temperature still remains unsolved even after construction of a composite structure. To address this issue, the surface and hetero-junction of the GO/TiO2 composite were engineered via a UV process. A photocatalytic effect of TiO2 induced the reduction of the GO phase in the composite solution. The comparison of gas-sensing properties before and after the UV process clearly showed the transition from n-type to p-type gas-sensing behavior toward reducing gases. This transition revealed that the dominant sensing material is GO, and TiO2 enhanced the gas reaction by providing more reactive sites. With a UV-treated composite sensor, the function of identifying target gas was maintained over a one-month period, showing strong resistance to humidity.

5.
Talanta ; 179: 569-574, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310276

RESUMO

We report here a new bio-image sensor for simultaneous detection of spatial and temporal distribution of multi-neurotransmitters. It consists of multiple enzyme-immobilized membranes on a 128 × 128 pixel array with read-out circuit. Apyrase and acetylcholinesterase (AChE), as selective elements, are used to recognize adenosine 5'-triphosphate (ATP) and acetylcholine (ACh), respectively. To enhance the spatial resolution, hydrogen ion (H+) diffusion barrier layers are deposited on top of the bio-image sensor and demonstrated their prevention capability. The results are used to design the space among enzyme-immobilized pixels and the null H+ sensor to minimize the undesired signal overlap by H+ diffusion. Using this bio-image sensor, we can obtain H+ diffusion-independent imaging of concentration gradients of ATP and ACh in real-time. The sensing characteristics, such as sensitivity and detection of limit, are determined experimentally. With the proposed bio-image sensor the possibility exists for customizable monitoring of the activities of various neurochemicals by using different kinds of proton-consuming or generating enzymes.


Assuntos
Acetilcolina/análise , Trifosfato de Adenosina/análise , Técnicas Biossensoriais , Neurotransmissores/análise , Prótons , Acetilcolinesterase/química , Apirase/química , Difusão , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Limite de Detecção
6.
Talanta ; 161: 419-424, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769427

RESUMO

A bio-image sensor using a patterned apyrase-immobilized membrane was developed to visualize the activities of adenosine triphosphate (ATP) and H+ ion in real-time. An enzymatic membrane patterning technique was suggested to immobilize apyrase on a specific sensing area of a charge coupled device (CCD)-type image sensor. It was able to observe the spatiotemporal information of ATP and H+ ion. The smallest size of a patterned membrane is 250×250µm2. The fabrication parameters of the patterned membrane, such as its thickness and the intensity of the incident light used for photolithography, were optimized experimentally. The sensing area under the patterned apyrase-immobilized membrane revealed a linear response up to 0.6mM of ATP concentration with a sensitivity of 37.8mV/mM. Meanwhile, another sensing area without the patterned membrane measured the diffused H+ ion from nearby membranes. This diffusion characteristics were analyzed to determine a measurement time that can minimize the undesirable impact of the diffused ions. In addition, the newly developed bio-image sensor successfully reconstructed ATP and H+ ion dynamics into sequential 2-dimensional images.


Assuntos
Trifosfato de Adenosina/análise , Prótons , Trifosfato de Adenosina/química , Apirase/química , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA